Dynamic Response of Multi-cracked Beams Resting on Elastic Foundation
Authors
Abstract:
Cracks cause to change dynamic response of beams and make discontinuity in slope of the deflection of the beams. The dynamic analysis of the Euler-Bernoulli cracked beam on the elastic foundation subjected to the concentrated load is presented in this paper. The stiffness of the elastic foundation and elastic supports influence on vibrational characteristics of the cracked beam. The Dynamic Green Function is applied to solve the governing equation. Thus, the dynamic response of the cracked beam is determined by Laplace Transform method. The effects of depth and location of the crack on natural frequency and deflection of the cracked beam on an elastic foundation are evaluated. In order to demonstrate the capability of the present approach, several numerical examples are worked out and the results are discussed.
similar resources
Bending Response of Nanobeams Resting on Elastic Foundation
In the present study, the finite element method is developed for the static analysis of nano-beams under the Winkler foundation and the uniform load. The small scale effect along with Eringen's nonlocal elasticity theory is taken into account. The governing equations are derived based on the minimum potential energy principle. Galerkin weighted residual method is used to obtain the finite eleme...
full textNumerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation
Free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elasticfoundation is studied using differential transform method (DTM) as a part of a calculation procedure. First,the governing differential equations of beam are derived in a general form considering the shear-freeboundary conditions (zero shear stress conditions at the top and bottom of a beam). ...
full textMesh-free Dynamic Analyses of FGM Sandwich Plates Resting on A Pasternak Elastic Foundation
This study analyzes the free vibration, forced vibration, resonance, and stress wave propagation of orthotropic sandwich plates made of functionally graded materials (FGMs). Dynamic analyses are conducted using a mesh-free method based on first-order shear deformation theory and the shape functions constructed using moving least squares approximation. The sandwich plates are rested on a Pastern...
full textDynamic Stability of Functionally Graded Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation
This paper studies dynamic stability of functionally graded beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The Young’s modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing dynamic equation is established. The eff...
full textOptimization of Functionally Graded Beams Resting on Elastic Foundations
In this study, two goals are followed. First, by means of the Generalized Differential Quadrature (GDQ) method, parametric analysis on the vibration characteristics of three-parameter Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, (c) two-parameter elasti...
full textvolume fraction optimization of four-parameter fgm beams resting on elastic foundation
this paper deals with volume fraction optimization of functionally graded (fg) beams resting on elastic foundation for maximizing the first natural frequency. the two-constituent functionally graded beam consists of ceramic and metal. these constituents are graded through the thickness of beam according to a generalized power-law distribution. one of the advantages of using generalized power- l...
full textMy Resources
Journal title
volume 31 issue 11
pages 1830- 1837
publication date 2018-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023